New mega dataset combined with deep neural network makes a progress in predicting impact of mutation on protein stability

Author:

Pak Marina AORCID,Dovidchenko Nikita V,Sharma Satyarth Mishra,Ivankov Dmitry NORCID

Abstract

AbstractPrediction of proteins stability change (ΔΔG) due to single mutation is important for biotechnology, medicine, and our understanding of physics underlying protein folding. Despite the recent tremendous success in 3D protein structure prediction, the apparently simpler problem of predicting the effect of mutations on protein stability has been hampered by the low amount of experimental data. With the recent high-throughput measurements of mutational effects in ‘mega’ experiment for ~850,000 mutations [Tsuboyama et al., bioRxiv, 2022] it becomes possible to apply the state-of-the-art deep learning methods. Here we explore the ability of ESM2 deep neural network architecture with added Light Attention mechanism to predict the change of protein stability due to single mutations. The resulting method ABYSSAL predicts well the data from the ‘mega’ experiment (Pearson correlation 0.85) while the prediction of ΔΔG values from previous experiments is more modest (Pearson correlation 0.50). ABYSSAL also shows a perfect satisfaction of the antisymmetry property. The ABYSSAL training demonstrated that the dataset should contain around ~100,000 data points for taking advantage of the state-of-the-art deep learning methods. Overall, our study shows great perspectives for developing the deep learning ΔΔG predictors.

Publisher

Cold Spring Harbor Laboratory

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3