Network analysis of chromophore binding site in LOV domain

Author:

Panda Rishab,Panda Pritam Kumar,Krishnamoorthy Janarthanan,Kar Rajiv K.ORCID

Abstract

AbstractPhotoreceptor proteins are versatile toolbox for developing biosensors for optogenetic applications. These molecular tools get activated upon illumination of blue light, which in turn offers a non-invasive method for gaining high spatiotemporal resolution and precise control of cellular signal transduction. The Light-Oxygen-Voltage (LOV) domain family of proteins is a well-recognized system for constructing optogenetic devices. Translation of these proteins into efficient cellular sensors is possible by tuning their photochemistry lifetime. However, the bottleneck is the need for more understanding of the relationship between the protein environment and photocycle kinetics. Significantly, the effect of the local environment also modulates the electronic structure of chromophore, which perturbs the electrostatic and hydrophobic interaction within the binding site. This work highlights the critical factors hidden in the protein networks, linking with their experimental photocycle kinetics. It presents an opportunity to quantitatively examine the alternation in chromophore’s equilibrium geometry and identify details which have substantial implications in designing synthetic LOV constructs with desirable photocycle efficiency.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3