Abstract
AbstractThe prevalence of highly repetitive sequences within the human Y chromosome has led to its incomplete assembly and systematic omission from genomic analyses. Here, we present long-readde novoassemblies of 43 diverse Y-chromosomes, three contiguously assembled including two from deep-rooted African Y lineages. Examination of the full extent of genetic variation between Y chromosomes across 180,000 years of human evolution reveals its remarkable complexity and diversity in size and structure, in contrast with its low level of base substitution variation. The size of the Y chromosome assemblies vary extensively from 45.2 to 84.9 Mbp, with individual repeat arrays showing up to 6.7-fold difference in length across samples. Half of the male-specific euchromatic region is subject to large (up to 5.94 Mbp) inversions with a >2-fold higher recurrence rate compared to the rest of the human genome. The Y centromere, composed of 171 bp α-satellite monomer units, appears to have evolved from tandem arrays of a 36-mer ancestral higher order repeat (HOR), which has been predominantly replaced by a 34-mer HOR, and reveals a pattern of higher sequence variation towards the short-arm side. The Yq12 heterochromatic region is ubiquitously flanked by approximately 649 kbp and 472 kbp inversions that maintain the alternating arrays ofDYZ1andDYZ2repeat units in between. While the sizes and the distribution of theDYZ1andDYZ2arrays vary considerably, primarily due to local expansions and contractions, the copy number ratio between theDYZ1andDYZ2monomer repeat units remains consistently close to 1:1. In addition, we have identified on average 65 kbp of novel sequence per Y chromosome. The availability of sequence-resolved Y chromosomes from multiple samples provides a basis for identifying new associations of specific traits with the Y chromosome and garnering novel evolutionary insights.
Publisher
Cold Spring Harbor Laboratory
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献