Rewiring Cancer Drivers to Activate Apoptosis

Author:

Gourisankar SaiORCID,Krokhotin Andrey,Ji Wenzhi,Liu Xiaofan,Chang Chiung-ying,Kim Samuel H.,Li Zhengnian,Wenderski Wendy,Simanauskaite Juste M.,Zhang Tinghu,Gray Nathanael S.,Crabtree Gerald R.

Abstract

ABSTRACTGenes that drive the proliferation, survival, invasion and metastasis of malignant cells have been identified for many human cancers1–6. Independent studies have identified cell death pathways that eliminate cells for the good of the organism7–10. The coexistence of the cell death pathways with the driver mutations suggest that the cancer driver could be rewired to activate cell death. We have invented a new class of molecules: TCIPs (Transcriptional/Epigenetic Chemical Inducers of Proximity) that recruit the endogenous cancer driver, or a downstream transcription factor, to the promoters of cell death genes thereby activating their expression. To develop this concept, we have focused on diffuse large B cell lymphoma (DLBCL), in which BCL6 is amplified or mutated11. BCL6 binds to the promoters of cell death genes and epigenetically suppresses their expression12. We produced the first TCIPs by chemically linking BCL6 inhibitors to small molecules that bind transcriptional activators. Several of these molecules robustly kill DLBCL at single-digit nanomolar concentrations, including chemotherapy-resistant, TP53-mutant lines. The dominant gain-of-function approach provided by TCIPs captures the combinatorial specificity inherit to transcription and can thereby accesses new therapeutic space. TCIPs are relatively non-toxic to normal cells and mice, apparently reflecting their need for coincident expression of both target proteins for effective killing. The general TCIP concept has applications in elimination of senescent cells, enhancing expression of therapeutic genes, treatment of diseases produced by haploinsufficiency, and activation of immunogens for immunotherapy.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3