Genomic mate-allocation strategies exploiting additive and non-additive genetic effects to maximise total clonal performance in sugarcane

Author:

Yadav SeemaORCID,Ross Elizabeth M.ORCID,Wei Xianming,Powell OwenORCID,Hivert ValentinORCID,Hickey Lee T.ORCID,Atkin Felicity,Deomano Emily,Aitken Karen S.ORCID,Voss-Fels Kai P.ORCID,Hayes Ben J.ORCID

Abstract

ABSTRACTMate-allocation in breeding programs can improve progeny performance by exploiting non-additive effects. Breeding decisions in the mate-allocation approach are based on predicted progeny merit rather than parental breeding value. This is particularly attractive when non-additive effects are significant, and the best-predicted progeny can be clonally propagated, for example sugarcane. We compared mate-allocation strategies that leverage non-additive and heterozygosity effects to maximise sugarcane clonal performance to schemes that use only additive effects to maximise breeding value. We used phenotypes and genotypes from a population of 2,909 clones phenotyped in Australia’s sugarcane breeding program’s final assessment trials for three traits: tonnes of cane per hectare (TCH), commercial cane sugar (CCS), and fibre. The clones from the last generation of this data set were used as parents to simulate families from all possible crosses (1,225), each with 50 progenies. The breeding and clonal values of progeny were predicted using GBLUP (considering only additive effects) and the e-GBLUP model (incorporating additive, non-additive and heterozygosity effects). Integer linear programming was used to identify the optimal mate-allocation among the selected parents. Compared to the breeding value, the predicted progeny value of allocated crossing pairs based on clonal performance (e-GBLUP) increased by 57%, 12%, and 16% for TCH, CCS, and fibre, respectively. In our study, the mate-allocation strategy exploiting non-additive and heterozygosity effects resulted in better clonal performance. However, there was a noticeable decline in additive gain, particularly for TCH, which might have been caused by the presence of large epistatic effects. When crosses were chosen based on clonal performance for TCH, progenies’ inbreeding coefficients were found significantly lower than for random mating, indicating that utilising non-additive and heterozygosity effects has advantages for controlling inbreeding depression. Therefore, mate-allocation is recommended in clonal crops to improve clonal performance and reduce inbreeding.

Publisher

Cold Spring Harbor Laboratory

Reference51 articles.

1. Generation of a 345K sugarcane SNP chip;Proceedings of the International Society of Cane Technologists,2016

2. Generation of a 234K sugarcane SNP chip;Int Sugar J,2017

3. Including nonadditive genetic effects in mating programs to maximize dairy farm profitability

4. Impact of depth of pedigree and inclusion of historical data on the estimation of additive variance and breeding values in a sugarcane breeding program

5. Berkelaar M , Eikland K , Notebaert P (2004) Linear Programming system Software.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3