Clinical Validation of Optical Genome Mapping for the Detection of Structural Variations in Hematological Malignancies

Author:

Pang Andy Wing Chun,Kosco Karena,Sahajpal Nikhil,Sridhar Arthi,Hauenstein Jen,Clifford Benjamin,Estabrook Joey,Chitsazan Alex,Sahoo Trilochan,Iqbal Anwar,Kolhe RavindraORCID,Raca Gordana,Hastie Alex R.ORCID,Chaubey AlkaORCID

Abstract

AbstractStructural variations (SVs) play a key role in the pathogenicity of hematological malignancies. Standard-of-care (SOC) methods such as karyotyping and fluorescencein situhybridization (FISH), employed globally for the past three decades have significant limitations in the resolution or the number of recurrent aberrations that can be simultaneously assessed, respectively. Next-generation sequencing (NGS) based technologies are now widely used to detect clinically significant sequence variants but are limited in their ability to accurately detect SVs. Optical genome mapping (OGM) is an emerging technology enabling the genome-wide detection of all classes of SVs at a significantly higher resolution than karyotyping and FISH. OGM neither requires cultured cells nor amplification of DNA and hence addresses the limitations of culture and amplification biases. This study reports the clinical validation of OGM as a laboratory developed test (LDT), according to CLIA guidelines, for genome-wide SV detection in different hematological malignancies. In total, 68 cases with hematological malignancies (of various subtypes), 27 controls and two cancer cell lines were used for this study. Ultra-high molecular weight DNA was extracted from the samples, fluorescently labeled, and run on the Bionano Genomics Saphyr system. A total of 207 datasets, including replicates, were generated and 100% could be analyzed successfully. Sample data were then analyzed using either disease specific or pan-cancer specific BED files to prioritize calls that are known to be diagnostically or prognostically relevant. Accuracy, precision, PPV and NPV were all 100% against standard of care results. Sensitivity, specificity, and reproducibility were 100%, 100% and 96%, respectively. Following the validation, 11 cases were run and analyzed using OGM at three additional sites. OGM found more clinically relevant SVs compared to SOC testing due to its ability to detect all classes of SVs at much higher resolution. The results of this validation study demonstrate OGM’s superiority over traditional SOC methods for the detection of SVs for the accurate diagnosis of various hematological malignancies.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3