Variability of Phenylalanine side chain conformations facilitates promiscuity of Fatty acid binding in Cockroach milk proteins

Author:

Santhakumari Partha Radhakrishnan,Dhanabalan KanagaVijayan,Virani Saniya,Hopf-Jannasch Amber S.,Benoit Joshua B.,Chopra Gaurav,Subramanian RamaswamyORCID

Abstract

AbstractThe pacific beetle cockroach,Diploptera punctata, is a viviparous cockroach that produces a milk-like substance to support the growing embryo with a brood sac. The structure of thein vivogrown crystals present in the gut of the embryo showed that the milk-derived crystals are heterogenous and are made of three proteins (called Lili-Mips). Multiple fatty acids could be modeled into the active site, and we hypothesized that each of the three isoforms of the protein bound to a different fatty acid. We previously reported that the recombinantly expressed Lili-Mip2 has a structure similar to the structure of the protein determined fromin vivocrystals, and this single isoform also binds to several fatty acids. In this study, we aimed to probe the specificity and affinity of fatty acid binding and test the stability of different isoforms. We show that all the isoforms can bind to different fatty acids with very similar affinities, and the local abundance of a fatty acid determined bound fatty acid ratios. Lili-Mips’ thermostability is pH dependent, where stability is highest at acidic pH and declines as the pH increases to physiological levels near 7.0. The measurement of the pH in the gut lumen and the gut cells suggests that the pH in the gut is acidic and the pH inside the gut cells is closer to neutral pH. We propose that the protein has evolved to be highly stable in the acidic gut lumen and, when absorbed inside the gut cells, becomes less stable to enable the breakdown of the glycosylated lipo-protein complex to provide essential metabolites for survival and development of the embryo. The different orientations of Phe-98 and Phe-100 control the binding pocket volume and allow the binding of different chain-length fatty acids to bind with similar affinities.

Publisher

Cold Spring Harbor Laboratory

Reference46 articles.

1. X-ray micro-tomography of Carboniferous stem-Dictyoptera: new insights into early insects;Biology Letters,2010

2. Fossil calibrations for the cockroach phylogeny (Insecta, Dictyoptera, Blattodea), comments on the use of wings for their identification, and a redescription of the oldest Blaberidae;Palaeontologia Electronica,2017

3. Estimating worldwide effects of non-pharmaceutical interventions on COVID-19 incidence and population mobility patterns using a multiple-event study

4. Embryology of the viviparous insects;Transactions of the New York Academy of Sciences,1950

5. The reproductive behavior of Diploptera punctata (Blattaria: Diplopteridae);In Proceedings of the 10th international congress of Entomology,1958

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3