Longitudinal flux balance analyses of a patient with Crohn’s disease highlight microbiome metabolic alterations

Author:

Basile Arianna,Heinken Almut,Hertel Johannes,Smarr Larry,Li Weizhong,Treu Laura,Valle Giorgio,Campanaro Stefano,Thiele InesORCID

Abstract

AbstractInflammatory bowel diseases (IBD) are characterised by episodic inflammation of the gastrointestinal tract. Gut microbial dysbiosis characterises the pathoetiology, but its role remains understudied. We report the first use of constraint-based microbial community modelling on a single individual with IBD, covering seven dates over 16 months, enabling us to identify a number of time-correlated microbial species and metabolites. We find that the individual’s dynamical microbial ecology in the disease state drives time-varyingin silicooverproduction, compared to healthy controls, of more than 24 biologically important metabolites, including oxygen, methane, thiamine, formaldehyde, trimethylamine N-oxide, folic acid, serotonin, histamine, and tryptamine. A number of these metabolites may yield new biomarkers of disease progression. The microbe-metabolite contribution analysis revealed that some genusDialisterspecies changed metabolic pathways according to the disease phases. At the first time point, characterised by the highest levels of blood and faecal inflammation biomarkers, they produced L-serine or formate. The production of the compounds, through a cascade effect, was mediated by the interaction with pathogenicEscherichia colistrains andDesulfovibrio piger. We integrated the microbial community metabolic models of each time point with a male whole-body, organ-resolved model of human metabolism to track the metabolic consequences of dysbiosis at different body sites. The presence ofD. pigerin the gut microbiome influenced the sulphur metabolism with a domino effect affecting the liver. These results underline the importance of tracking an individual’s gut microbiome along a time course, creating a new analysis framework for self-quantified medicine.Graphical abstract

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3