Diagnosis with Confidence: Deep Learning for Reliable Classification of Squamous Lesions of the Upper Aerodigestive Tract

Author:

Lubrano MélanieORCID,Bellahsen-Harrar Yaëlle,Berlemont Sylvain,Walter Thomas,Badoual Cécile

Abstract

AbstractDiagnosis of head and neck squamous dysplasia and carcinomas is critical for patient care, cure and follow-up. It can be challenging, especially for intraepithelial lesions. Even though the last WHO classification simplified the grading of dysplasia with only two grades (except for oral or oropharyngeal lesions), the inter and intra-observer variability remains substantial, especially for non-specialized pathologists. In this study we investigated the potential of deep learning to assist the pathologist with automatic and reliable classification of head and neck squamous lesions following the 2022 WHO classification system for the hypopharynx, larynx, trachea and parapharyngeal space. We created, for the first time, a large scale database of histological samples intended for developing an automatic diagnostic tool. We developed and trained a weakly supervised model performing classification from whole slides images. A dual blind review was carried out to define a gold standard test set on which our model was able to classify lesions with high accuracy on every class (average AUC: 0.878 (95% CI: [0.834-0.918])). Finally, we defined a confidence score for the model predictions, which can be used to identify ambiguous or difficult cases. When the algorithm is applied as a screening tool, such cases can then be submitted to pathologists in priority. Our results demonstrate that the model, associated with confidence measurements, can help in the difficult task of classifying head and neck squamous lesions.

Publisher

Cold Spring Harbor Laboratory

Reference54 articles.

1. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries

2. Head and neck squamous cell carcinoma;Nat Rev Dis Primer,2020

3. Use of artificial intelligence in diagnosis of head and neck precancerous and cancerous lesions: A systematic review;Oral Oncol,2020

4. The classification and differential diagnosis of epithelial hyperplasia of the laryngeal mucosa on the basis of histomorphological features;Z Laryngol Rhinol Otol,1963

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3