Drinkable, liquidin situ-forming and tough hydrogels for gastrointestinal therapeutics

Author:

Liu Gary W.,Pickett Matthew J.,Kuosmanen Johannes L. P.,Ishida Keiko,Madani Wiam A. M.,White Georgia N.,Jenkins Joshua,Feig Vivian R.,Jimenez Miguel,Lopes Aaron,Morimoto Joshua,Fitzgerald Nina,Cheah Jaime H.,Soule Christian K.,Fabian Niora,Hayward Alison,Langer Robert S.,Traverso GiovanniORCID

Abstract

ABSTRACTTablets and capsules are a cornerstone of medicine, but these solid dosage forms can be challenging to swallow for geriatric and pediatric patients. While liquid formulations are easier to ingest, these formulations lack the capacity to localize therapeutics and excipients nor act as controlled release devices. To bridge the advantages of solid and liquid dosage forms, here we describe drug formulations based on liquidin situ-forming and tough (LIFT) hydrogels. Drug-loaded LIFT hydrogels are formed directly in the stomach through the sequential ingestion of a crosslinker solution of calcium and dithiol crosslinkers, followed by the ingestion of a drug-containing polymer solution of alginate and 4-arm poly(ethylene glycol)-maleimide. We show that LIFT hydrogels are mechanically tough and able to robustly form in the presence of complex gastric fluid andin vivoin rat and porcine stomachs. LIFT hydrogels are retained within the porcine stomach for up to 24 h, biocompatible, and safely cleared. These hydrogels deliver a total dose comparable to unencapsulated drug but with delayed and lower maximum drug plasma concentrations, providing a method for controlled release that may mitigate drug toxicity. Co-encapsulation of lactase as a model biologic drug and calcium carbonate mitigated gastric-mediated deactivation of encapsulated enzyme in rat and porcine models. We also demonstrate the potential of these hydrogels to encapsulate and protect a model therapeutic bacterium,E. coliNissle 1917, against acid. LIFT hydrogels present a biocompatible means of tough, double-network hydrogel formationin situin the gastric cavity, and may expand medication access for patients with difficulty swallowing.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3