Motion Impact Score for Detecting Spurious Brain-Behavior Associations

Author:

Kay Benjamin P.ORCID,Montez David F.,Marek ScottORCID,Tervo-Clemmens Brenden,Siegel Joshua S.,Adeyemo Babatunde,Laumann Timothy O.,Metoki Athanasia,Chauvin Roselyne J.,Van Andrew N.,Krimmel Samuel R.,Miller Ryland L.,Newbold Dillan J.,Zheng AnnieORCID,Seider Nicole A.,Scheidter Kristen M.,Monk Julia,Feczko Eric,Randolph Anita,Miranda-Dominguez Oscar,Moore Lucille A.,Perrone Anders J.,Conan Gregory M.,Earl Eric A.,Malone Stephen M.,Cordova Michaela,Doyle Olivia,Lynch Benjamin J.,Wilgenbusch James C.,Pengo Thomas,Graham Alice M.,Roland Jarod L.,Gordon Evan M.,Snyder Abraham Z.,Barch Deanna M.,Fair Damien A.,Dosenbach Nico U.F.

Abstract

AbstractBetween-participant differences in head motion introduce systematic bias to resting state fMRI brain-wide association studies (BWAS) that is not completely removed by denoising algorithms. Researchers who study traits, or phenotypes associated with in-scanner head motion (e.g. psychiatric disorders) need to know if trait-functional connectivity (FC) correlations are biased by residual motion artifact in order to avoid reporting false positive results. We devised an adaptable method, Split Half Analysis of Motion Associated Networks (SHAMAN), to assign a motion impact score to specific trait-FC correlations. The SHAMAN approach distinguishes between motion artifact causing false positive vs false negative bias. SHAMAN was > 95% specific at sample sizes of n = 100 and above. SHAMAN was 95% sensitive to detection of false positive motion impact score at sample sizes of n = 3,000 but only 59% sensitive to detection of false negative motion impact score, making it most useful for large BWAS. We computed motion impact scores for trait-FC correlations with 45 demographic, biophysical, cognitive, and personality traits from n = 7,270 participants in the Adolescent Brain Cognitive Development (ABCD) Study. After standard denoising with ABCD-BIDS and without motion censoring, 60% (27/45) of traits had significant (p < 0.05) false positive motion impact scores and 36% (16/45) of traits had false negative motion impact scores. Censoring at framewise displacement (FD) < 0.2 mm reduced the proportion of traits with significant false positive motion impact scores from 60% to 2% (1/45) but did not decrease the number of traits with significant false negative motion impact scores.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3