A robust deep learning platform to predict CD8+ T-cell epitopes

Author:

Lee Chloe H.ORCID,Huh Jaesung,Buckley Paul R.ORCID,Jang Myeongjun,Pereira Pinho Mariana,Fernandes Ricardo A.ORCID,Antanaviciute AgneORCID,Simmons AlisonORCID,Koohy HashemORCID

Abstract

AbstractT-cells play a crucial role in the adaptive immune system by inducing an anti-tumour response, defending against pathogens, and maintaining tolerance against self-antigens, which has sparked interest in the development of T-cell-based vaccines and immunotherapies. Because screening antigens driving the T-cell response is currently low-throughput and laborious, computational methods for predicting CD8+ T-cell epitopes have emerged. However, most immunogenicity algorithms struggle to learn features of peptide immunogenicity from small datasets, suffer from HLA bias and are unable to reliably predict pathology-specific CD8+ T-cell epitopes. Therefore, we developed TRAP (T-cell recognition potential of HLA-I presented peptides), a robust deep learning platform for predicting CD8+ T-cell epitopes from MHC-I presented pathogenic and self-peptides. TRAP uses transfer learning, deep learning architecture and MHC binding information to make context-specific predictions of CD8+ T-cell epitopes. TRAP also detects low-confidence predictions for peptides that differ significantly from those in the training datasets to abstain from making incorrect predictions. To estimate the immunogenicity of pathogenic peptides with low-confidence predictions, we further developed a novel metric, RSAT (relative similarity to autoantigens and tumour-associated antigens), as a complementary to ‘dissimilarity to self’ from cancer studies. We used TRAP to identify epitopes from glioblastoma patients as well as SARS-CoV-2 peptides, and it outperformed other algorithms in both cancer and pathogenic settings. Thus, this study presents a novel computational platform for accurately predicting CD8+ T-cell epitopes to foster a better understanding of antigen-specific T-cell response and the development of effective clinical therapeutics.HighlightsHLA bias and out-of-distribution problem are causes of poor performance of current state-of-the-art algorithmsTransfer learning, deep learning architecture, context-specific and HLA-generalised approaches improve CD8+ T-cell epitope predictionTRAP reports degree of correctness to improve reliability of the predictionA novel metric termed RSAT estimates immunogenicity of pathogenic peptides, as a complementary to ‘dissimilarity to self’ from cancer studies

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3