A universal workflow for creation, validation and generalization of detailed neuronal models

Author:

Reva Maria,Rössert Christian,Arnaudon Alexis,Damart Tanguy,Mandge Darshan,Tuncel Anıl,Ramaswamy Srikanth,Markram Henry,Van Geit Werner

Abstract

AbstractDetailed single neuron modeling is widely used to study neuronal functions. While cellular and functional diversity across the mammalian cortex is vast, most of the available computational tools are dedicated to the reproduction of a small set of specific features characteristic of a single neuron. Here, we present a generalized automated workflow for the creation of robust electrical models and illustrate its performance by building cell models for the rat somatosensory cortex (SSCx). Each model is based on a 3D morphological reconstruction and a set of ionic mechanisms specific to the cell type. We use an evolutionary algorithm to optimize passive and active ionic parameters to match the electrophysiological features extracted from whole-cell patch-clamp recordings. To shed light on which parameters are constrained by experimental data and which could be degenerate, we perform a parameter sensitivity analysis. We also validate the optimized models against additional experimental stimuli and assess their generalizability on a population of morphologies with the same morphological type. With this workflow, we generate SSCx neuronal models producing the variability of neuronal responses. Due to its versatility, our workflow can be used to build robust biophysical models of any neuronal type.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3