dcSBM: A federated constrained source-based morphometry approach for multivariate brain structure mapping

Author:

Saha Debbrata K.ORCID,Silva Rogers F.ORCID,Baker Bradley T.,Saha Rekha,Calhoun Vince D.ORCID

Abstract

AbstractThe examination of multivariate brain morphometry patterns has gained attention in recent years, especially for their powerful exploratory capabilities in the study of differences between patients and controls. Among many existing methods and tools for analysis of brain anatomy based on structural magnetic resonance imaging (sMRI) data, data-driven source based morphometry (SBM) focuses on the exploratory detection of such patterns. Constrained source-based morphometry (constrained SBM) is a widely used semi-blind extension of SBM that enables extracting maximally independent reference-alike sources using the constrained independent component analysis (ICA) approach. In order to operate, constrained SBM needs the data to be locally accessible. However, there exist many reasons (e.g., the concerns of revealing identifiable rare disease information, or violating strict IRB policies) that may preclude access to data from different sites. In this scenario, constrained SBM fails to leverage the benefits of decentralized data. To mitigate this problem, we present a novel approach: decentralized constrained source-based morphometry (dcSBM). In dcSBM, the original data never leaves the local site. Each site operates constrained ICA on their private local data while using a common distributed computation platform. Then, an aggregator/master node aggregates the results estimated from each local site and applies statistical analysis to find out the significant sources. In our approach, we first use UK Biobank sMRI data to investigate the reliability of our dcSBM algorithm. Finally, we utilize two additional multi-site patient datasets to validate our model by comparing the resulting group difference estimates from both centralized and decentralized constrained SBM.

Publisher

Cold Spring Harbor Laboratory

Reference52 articles.

1. A Voxel-Based Morphometric Study of Ageing in 465 Normal Adult Human Brains

2. Source-based morphometry: The use of independent component analysis to identify gray matter differences with application to schizophrenia

3. A review of multivariate methods for multimodal fusion of brain imaging data

4. An introductory review of parallel independent component analysis (p-ica) and a guide to applying p-ica to genetic data and imaging phenotypes to identify disease-associated biological pathways and systems in common complex disorders;Frontiers in genetics,2015

5. Source-based morphometry: a decade of covarying structural brain patterns;Brain Structure and Function,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3