Upstream translation initiation expands the coding capacity of segmented negative-strand RNA viruses

Author:

Sloan ElizabethORCID,Alenquer MartaORCID,Chung Liliane,Clohisey SaraORCID,Dinan Adam M.,Gifford RobertORCID,Gu Quan,Irigoyen NereaORCID,Jones Joshua D.,van Knippenberg Ingeborg,Rezelj VeronicaORCID,Wang Bo,Wise Helen M.,Amorim Maria JoaoORCID,Baillie J KennethORCID,Brierley IanORCID,Digard PaulORCID,Firth Andrew E.ORCID,MacLeod Megan K.ORCID,Hutchinson EdwardORCID

Abstract

AbstractSegmented negative-strand RNA viruses (sNSVs) include the influenza viruses, the bunyaviruses, and other major pathogens of humans, other animals and plants. The genomes of these viruses are extremely short. In response to this severe genetic constraint, sNSVs use a variety of strategies to maximise their coding potential. Because the eukaryotic hosts parasitized by sNSVs can regulate gene expression through low levels of translation initiation upstream of their canonical open reading frames (ORFs), we asked whether sNSVs could use upstream translation initiation to expand their own genetic repertoires. Consistent with this hypothesis, we showed that influenza A viruses (IAVs) and bunyaviruses were capable of upstream translation initiation. Using a combination of reporter assays and viral infections, we found that upstream translation in IAVs can initiate in two unusual ways: through non-AUG initiation in virally encoded ‘untranslated’ regions, and through the appropriation of an AUG-containing leader sequence from host mRNAs through viral cap-snatching, a process we termed ‘start-snatching.’ Finally, while upstream translation of cellular genes is mainly regulatory, for sNSVs it also has the potential to create novel viral gene products. If in frame with a viral ORF, this creates N-extensions of canonical viral proteins. If not, it allows the expression of cryptic overlapping ORFs, which we found were highly conserved in IAV and widely distributed in peribunyaviruses. Thus, by exploiting their host’s capacity for upstream translation initiation, sNSVs can expand still further the coding potential of their extremely compact RNA genomes.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Accessory Gene Products of Influenza A Virus;Cold Spring Harbor Perspectives in Medicine;2020-09-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3