Abstract
AbstractAttending to different features of a scene can alter the responses of neurons in early- and mid- level visual areas but the nature of this change depends on both the (top down) attentional task and the (bottom up) visual stimulus. One outstanding question is the spatial scale at which cortex is modulated by attention to low-level stimulus features such as shape, contrast and orientation. It is unclear whether the recruitment of neurons to particular tasks occurs at an area level or at the level of intra-areal sub-populations, or whether the critical factor is a change in the way that areas communicate with each other. Here we use functional magnetic resonance imaging (fMRI) and psychophysics, to ask how areas known to be involved in processing different visual features (orientation, contrast and shape) are modulated as participants switch between tasks based on those features while the visual stimulus itself is effectively constant. At a univariate level, we find almost no feature-specific bottom-up or top-down responses in the areas we examine. However, multivariate analyses reveal a complex pattern of voxel-level modulation driven by attentional task. Connectivity analyses also demonstrate flexible and selective patterns of connectivity between early visual areas as a function of attentional focus. Overall, we find that attention alters the sensitivity and connectivity of neuronal subpopulations within individual early visual areas but, surprisingly, not the univariate response amplitudes of the areas themselves.
Publisher
Cold Spring Harbor Laboratory
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献