Native plasmid-encoded mercury resistance genes are functional and demonstrate natural transformation in environmental bacterial isolates

Author:

Kothari Ankita,Soneja Drishti,Tang Albert,Carlson Hans,Deutschbauer Adam M.,Mukhopadhyay AindrilaORCID

Abstract

AbstractPlasmid-mediated horizontal gene transfer (HGT) is a major driver of genetic diversity in bacteria. We experimentally validated the function of a putative mercury resistance operon present on an abundant 8 kilobase pair native plasmid found in groundwater samples without detectable levels of mercury. Phylogenetic analyses of the plasmid-encoded mercury reductases from the studied groundwater site show them to be distinct from those reported in proximal metal-contaminated sites. We synthesized the entire native plasmid and demonstrated that the plasmid was sufficient to confer functional mercury resistance inEscherichia coli. Given the possibility that natural transformation is a prevalent HGT mechanism in the low cell density environments of groundwaters, we also assayed bacterial strains from this environment for competence. We used the native plasmid-encoded metal resistance to design a screen and identified 17 strains positive for natural transformation. We selected 2 of the positive strains along with a model bacterium to fully confirm HGT via natural transformation. From an ecological perspective, the role of the native plasmid population in providing advantageous traits combined with the microbiome’s capacity to take up environmental DNA enables rapid adaptation to environmental stresses.ImportanceHorizontal transfer of mobile genetic elements via natural transformation has been poorly understood in environmental microbes. Here, we confirm the functionality of a native plasmid-encoded mercury resistance operon in a model microbe and then query for the dissemination of this resistance trait via natural transformation into environmental bacterial isolates. We identify seventeen strains including Gram-positive and Gram-negative bacteria to be naturally competent. These strains were able to successfully take up the plasmid DNA and obtain a clear growth advantage in the presence of mercury. Our study provides important insights into gene dissemination via natural transformation enabling rapid adaptation to dynamic stresses in groundwater environments.

Publisher

Cold Spring Harbor Laboratory

Reference47 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3