Standardized microgel beads as elastic cell mechanical probes

Author:

Girardo S.,Träber N.,Wagner K.,Cojoc G.,Herold C.,Goswami R.,Schlüßler R.,Abuhattum S.,Taubenberger A.,Reichel F.,Mokbel D.,Herbig M.,Schürmann M.,Müller P.,Heida T.,Jacobi A.,Thiele J.,Werner C.,Guck J.

Abstract

ABSTRACTCell mechanical measurements are gaining increasing interest in biological and biomedical studies. However, there are no standardized calibration particles available that permit the cross-comparison of different measurement techniques operating at different stresses and time-scales. Here we present the rational design, production, and comprehensive characterization of poly-acylamide (PAAm) microgel beads mimicking biological cells. We produced mono-disperse beads at rates of 20 – 60 kHz by means of a microfluidic droplet generator, where the pre-gel composition was adjusted to tune the beads’ elasticity in the range of cell and tissue relevant mechanical properties. We verified bead homogeneity by optical diffraction tomography and Brillouin microscopy. Consistent elastic behavior of microgel beads at different shear rates was confirmed by AFM-enabled nanoindentation and real-time deformability cytometry (RT-DC). The remaining inherent variability in elastic modulus was rationalized using polymer theory and effectively reduced by sorting based on forward-scattering using conventional flow cytometry. Our results show that PAAm microgel beads can be standardized as mechanical probes, to serve not only for validation and calibration of cell mechanical measurements, but also as cell-scale stress sensors.Significance StatementOften vastly different cell mechanical properties are reported even for the same cell type when employing different measurement techniques. This discrepancy shows the urgent need for standardized calibration particles to cross-compare and validate techniques. Microgel beads can serve this purpose, but they have to fulfil specific requirements such as homogeneity, sizes and elasticities in the range of the cells, and they have to provide comparable results independent of the method applied. Here we demonstrate the standardized production of polyacrylamide microgel beads with all the features an elastic cell-mimic should have. These can not only be used as method calibration particles, but can also serve as cell-scale sensors to quantify normal and shear stresses exerted by other cells and inside tissues, enabling many new applications.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3