Abstract
AbstractThe schizophrenia and bipolar disorder associated gene, BRD1, encodes a scaffold protein that in complex with epigenetic modifiers regulate gene sets enriched for psychiatric disorder risk. Preclinical evidence from male Brd1+/− mice has previously implicated BRD1 with phenotypes of translational relevance to schizophrenia. Here we describe the phenotype of female Brd1+/− mice and report attenuated dendritic architecture and monoaminergic dysregulation accompanied by sex-specific changes in affective behaviors. In accordance, global gene expression profiling reveals regional dysregulation of gene sets enriched with major depressive disorder and schizophrenia risk in female and male Brd1+/− mice, respectively. Independent of sex, however, differentially expressed genes cluster in common functional pathways associated with psychiatric disorders, including mitochondrial dysfunction and oxidative phosphorylation as well as G-protein coupled-, and nuclear receptor mediated signaling. Accordingly, we provide in vitro evidence that BRD1 modulates the transcriptional drive of a subset of nuclear receptors (e.g. the vitamin D and glucocorticoid receptors). Moreover, we demonstrate enrichment of psychiatric disorder risk in the target genes of nuclear receptors, sex-biased expression of several nuclear receptor genes in the adult brain of Brd1+/− mice, and that sex-biased genes in general are enriched with nuclear receptor genes particularly at the earliest developmental stage of the human brain. Overall, our data suggests that the spatio-temporal interaction between BRD1 and subsets of nuclear receptors in the brain is sex-biased and that hampered BRD1 mediated regulation of target genes governed by certain nuclear receptors may significantly contribute to sex differences in psychopathology.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献