Transcription factor NF-κB in a basal metazoan, the sponge, has conserved and unique sequences, activities, and regulation

Author:

Williams Leah M.,Inge Melissa M.,Mansfield Katelyn M.,Rasmussen Anna,Afghani Jamie,Agrba Mikhail,Albert Colleen,Andersson Cecilia,Babaei Milad,Babaei Mohammad,Bagdasaryants Abigail,Bonilla Arianna,Browne Amanda,Carpenter Sheldon,Chen Tiffany,Christie Blake,Cyr Andrew,Dam Katie,Dulock Nicholas,Erdene Galbadrakh,Esau Lindsie,Esonwune Stephanie,Hanchate Anvita,Huang Xinli,Jennings Timothy,Kasabwala Aarti,Kehoe Leanne,Kobayashi Ryan,Lee Migi,LeVan Andre,Liu Yuekun,Murphy Emily,Nambiar Avanti,Olive Meagan,Patel Devansh,Pavesi Flaminio,Petty Christopher A.,Samofalova Yelena,Sanchez Selma,Stejskal Camilla,Tang Yinian,Yapo Alia,Cleary John P.,Yunes Sarah A.,Siggers Trevor,Gilmore Thomas D.

Abstract

ABSTRACTBiological and biochemical functions of immunity transcription factor NF-κB in basal metazoans are largely unknown. Herein, we characterize transcription factor NF-κB from the demosponge Amphimedon queenslandica (Aq), in the phylum Porifera. Structurally and phylogenetically, the Aq-NF-κB protein is most similar to NF-κB p100 and p105 among vertebrate proteins, with an N-terminal DNA-binding/dimerization domain, a C-terminal Ankyrin (ANK) repeat domain, and a DNA binding-site profile more similar to human NF-κB proteins than Rel proteins. Aq-NF-κB also resembles the mammalian NF-κB protein p100 in that C-terminal truncation results in translocation of Aq-NF-κB to the nucleus and increases its transcriptional activation activity. Overexpression of a human or sea anemone IκB kinase (IKK) can induce C-terminal processing of Aq-NF-κB in vivo, and this processing requires C-terminal serine residues in Aq-NF-κB. Unlike human NF-κB p100, however, the C-terminal sequences of Aq-NF-κB do not effectively inhibit its DNA-binding activity when expressed in human cells. Tissue of another demosponge, a black encrusting sponge, contains NF-κB site DNA-binding activity and an NF-κB protein that appears mostly processed and in the nucleus of cells. NF-κB DNA-binding activity and processing is increased by treatment of sponge tissue with LPS. By transcriptomic analysis of A. queenslandica we identified likely homologs to many upstream NF-κB pathway components. These results present a functional characterization of the most ancient metazoan NF-κB protein to date, and show that many characteristics of mammalian NF-κB are conserved in sponge NF-κB, but the mechanism by which NF-κB functions and is regulated in the sponge may be somewhat different.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3