Genomic architecture of codfishes featured by expansions of innate immune genes and short tandem repeats

Author:

Tørresen Ole K.ORCID,Brieuc Marine S. O.,Solbakken Monica H.ORCID,Sørhus Elin,Nederbragt Alexander J.ORCID,Jakobsen Kjetill S.ORCID,Meier Sonnich,Edvardsen Rolf B.ORCID,Jentoft Sissel

Abstract

AbstractBackgroundIncreased availability of genome assemblies for non-model organisms has resulted in invaluable biological and genomic insight into numerous vertebrates including teleosts. The sequencing and assembly of the Atlantic cod (Gadus morhua) genome and the genomes of many of its relatives (Gadiformes) demonstrated a shared loss 100 million years ago of the major histocompatibility complex (MHC) II genes. The recent publication of an improved version of the Atlantic cod genome assembly reported an extreme density of tandem repeats compared to other vertebrate genome assemblies. Highly contiguous genome assemblies are needed to further investigate the unusual immune system of the Gadiformes, and the high density of tandem repeats in this group.ResultsHere, we have sequenced and assembled the genome of haddock (Melanogrammus aeglefinus) - a relative of Atlantic cod - using a combination of PacBio and Illumina reads. Comparative analyses uncover that the haddock genome contains an even higher density of tandem repeats outside and within protein coding sequences than Atlantic cod. Further, both species show an elevated number of tandem repeats in genes mainly involved in signal transduction compared to other teleosts. An in-depth characterization of the immune gene repertoire demonstrates a substantial expansion of MCHI in Atlantic cod compared to haddock. In contrast, the Toll-like receptors show a similar pattern of gene losses and expansions. For another gene family associated with the innate immune system, the NOD-like receptors (NLRs), we find a large expansion common to all teleosts, with possible lineage-specific expansions in zebrafish, stickleback and the codfishes.ConclusionsThe generation of a highly contiguous genome assembly of haddock revealed that the high density of short tandem repeats as well as expanded immune gene families is not unique to Atlantic cod – but most likely a feature common to all codfishes. A shared expansion of NLR genes in teleosts suggests that the NLRs have a more substantial role in the innate immunity of teleosts than other vertebrates. Moreover, we find that high copy number genes combined with variable genome assembly qualities may impede complete characterization, i.e. the number of NLRs might be underestimates in the different teleost species.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3