Beyond APs and VPs: evidences of chaos and self-organized criticality in electrical signals in plants

Author:

Saraiva G. F. R.,Ferreira A. S.,Souza G. M.

Abstract

AbstractStudies on plant electrophysiology are mostly focused on specific traits of action potentials (APs) and/or variation potentials (VPs), often in single cells. Inspired by the complexity of the signaling network in plants and by analogies with some traits of neurons in human brains, we have sought for evidences of high complexity in the electrical dynamics of plant signaling, beyond APs and VPs responses. Thus, from EEG-like data analyses of soybean plants, we showed consistent evidences of chaotic dynamics in the electrical time series. Furthermore, we have found that the dynamic complexity of electrical signals is affected by the plant physiological conditions, decreasing when plant was stressed. Surprisingly, but not unlikely, we have observed that, after stimuli, electrical spikes arise following a power law distribution, which is indicative of self-organized criticality (SOC). Since, as far as we know, these were the first evidences of chaos and SOC in plant electrophysiology, we have asked follow-up questions and we have proposed new hypotheses, seeking for improving our understanding about these findings.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3