Decoding the Language of Microbiomes: Leveraging Patterns in 16S Public Data using Word-Embedding Techniques and Applications in Inflammatory Bowel Disease

Author:

Tataru Christine A.ORCID,David Maude M.ORCID

Abstract

AbstractMicrobiomes are complex ecological systems that play crucial roles in understanding natural phenomena from human disease to climate change. Especially in human gut microbiome studies, where collecting clinical samples can be arduous, the number of taxa considered in any one study often exceeds the number of samples ten to one hundred-fold. This discrepancy decreases the power of studies to identify meaningful differences between samples, increases the likelihood of false positive results, and subsequently limits reproducibility. Despite the vast collections of microbiome data already available, biome-specific patterns of microbial structure are not currently leveraged to inform studies. Instead, most microbiome survey studies focus on differential abundance testing per taxa in pursuit of specific biomarkers for a given phenotype. This methodology assumes differences in individual species, genera, or families can be used to distinguish between microbial communities and ignores community-level response. In this paper, we propose to leverage public microbiome databases to shift the analysis paradigm from a focus on taxonomic counts to a focus on comprehensive properties that more completely characterize microbial community members’ function and environmental relationships. We learn these properties by applying an embedding algorithm to quantify taxa co-occurrence patterns in over 18,000 samples from the American Gut Project (AGP) microbiome crowdsourcing effort. The resulting set of embeddings transforms human gut microbiome data from thousands of taxa counts to a latent variable landscape of only one hundred “properties”, or contextual relationships. We then compare the predictive power of models trained using properties, normalized taxonomic count data, and another commonly used dimensionality reduction method, Principal Component Analysis in categorizing samples from individuals with inflammatory bowel disease (IBD) and healthy controls. We show that predictive models trained using property data are the most accurate, robust, and generalizable, and that property-based models can be trained on one dataset and deployed on another with positive results. Furthermore, we find that these properties can be interpreted in the context of current knowledge; properties correlate significantly with known metabolic pathways, and distances between taxa in “property space” roughly correlate with their phylogenetic distances. Using these properties, we are able to extract known and new bacterial metabolic pathways associated with inflammatory bowel disease across two completely independent studies.More broadly, this paper explores a reframing of the microbiome analysis mindset, from taxonomic counts to comprehensive community-level properties. By providing a set of pre-trained embeddings, we allow any V4 16S amplicon study to leverage and apply the publicly informed properties presented to increase the statistical power, reproducibility, and generalizability of analysis.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3