The periphery and the core properties explain the omnigenic model in the human interactome

Author:

Wang Bingbo,Glass Kimberly,Röhl Annika,Santolini Marc,Croteau-Chonka Damien C.,Weiss Scott T.,Raby Benjamin A.,Sharma Amitabh

Abstract

AbstractUnderstanding the connectivity patterns of genes in a localized disease neighborhood or disease module in a molecular interaction network (interactome) is a key step toward advancing the knowledge about molecular mechanisms underlying a complex disease. In this work, we introduce a framework that detects peripheral and core regions of a disease in the human interactome. We leverage gene expression data on 104 diseases and analyze the connectivity of differentially expressed genes (quantified by a p-value < 0.05) and their topological membership in the network to distinguish between peripheral and core genes. Per definition, peripheral and core genes are topologically different and we show that they also differ biologically. Core genes are more enriched for Genome-wide association study (GWAS) and Online Mendelian Inheritance in Man (OMIM) data, whereas peripheral genes are more shared across different disease states and their overlap helps predict disease proximity in the human interactome. Based on this observation, we propose a flower model to explain the organization of genes in the human interactome, with core genes of different diseases as the petals and the peripheral genes as the (shared) stem. We show that this network model is an important step towards finding novel drug targets and improving disease classification. Overall, we were able to demonstrate how perturbations percolate through the human interactome and contribute to peripheral and core regions, an important novel feature of the omnigenic model.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3