QstR-dependent regulation of natural competence and type VI secretion in Vibrio cholerae

Author:

Jaskólska Milena,Stutzmann Sandrine,Stoudmann Candice,Blokesch MelanieORCID

Abstract

AbstractDuring growth on chitinous surfaces in its natural aquatic environment Vibrio cholerae develops natural competence for transformation and kills neighboring non-immune bacteria using a type VI secretion system (T6SS). Activation of these two phenotypes requires the chitin-induced regulator TfoX, but also integrates signals from quorum sensing via the intermediate regulator QstR, which belongs to the LuxR-type family of regulators. Here, we define the QstR regulon using RNA sequencing. Moreover, by mapping QstR binding sites using chromatin immunoprecipitation coupled with deep sequencing we demonstrate that QstR is likely a dual transcription factor that binds upstream of the up- and down-regulated genes. Like other LuxR-type family transcriptional regulators we show that QstR function is dependent on dimerization. However, in contrast to the well-studied LuxR-type biofilm regulator VpsT of V. cholerae, which requires the second messenger c-di-GMP, we show that QstR dimerization and function is c-di-GMP independent. Surprisingly, although ComEA, which is a periplasmic DNA-binding protein essential for transformation, is produced in a QstR-dependent manner, QstR-binding was not detected upstream of comEA suggesting the existence of a further regulatory pathway. Overall these results provide detailed insights into the function of a key regulator of natural competence and type VI secretion in V. cholerae.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3