Rainbowfish: A Succinct Colored de Bruijn Graph Representation

Author:

Almodaresi Fatemeh,Pandey Prashant,Patro Rob

Abstract

AbstractThe colored de Bruijn graph— a variant of the de Bruijn graph which associates each edge (i.e., k-mer) with some set of colors — is an increasingly important combinatorial structure in computational biology. Iqbal et al. demonstrated the utility of this structure for representing and assembling a collection (pop-ulation) of genomes, and showed how it can be used to accurately detect genetic variants. Muggli et al. introduced VARI, a representation of the colored de Bruijn graph that adopts the BOSS representation for the de Bruijn graph topology and achieves considerable savings in space over Cortex, albeit with some sacrifice in speed. The memory-efficient representation of VARI allows the colored de Bruijn graph to be constructed and analyzed for large datasets, beyond what is possible with Cortex.In this paper, we introduce Rainbowfish, a succinct representation of the color information of the colored de Bruijn graph that reduces the space usage even further. Our representation also uses BOSS to represent the de Bruijn graph, but decomposes the color sets based on an equivalence relation and exploits the inherent skewness in the distribution of these color sets. The Rainbowfish representation is compressed based on the 0th-order entropy of the color sets, which can lead to a significant reduction in the space required to store the relevant information for each edge. In practice, Rainbowfish achieves up to a 20 × improvement in space over VARI. Rainbowfish is written in C++11 and is available at https://github.com/COMBINE-lab/rainbowfish.

Publisher

Cold Spring Harbor Laboratory

Reference17 articles.

1. Alexander Bowe , Taku Onodera , Kunihiko Sadakane , and Tetsuo Shibuya . Succinct de Bruijn graphs. In Proceedings of the International Workshop on Algorithms in Bioinformatics, pages225–235. Springer, 2012.

2. Whole genome resequencing in tomato reveals variation associated with introgression and breeding events

3. Simon Gog . Succinct data structure library. https://github.com/simongog/sdsl-lite, 2017. [online; accessed 01-Feb-2017].

4. Rodrigo Gonzalez , Szymon Grabowski , Veli Makinen , and Gonzalo Navarro . Practical implementation of rank and select queries. In Poster Proceedings Volume of 4th Workshop on Efficient and Experimental Algorithms (WEA), pages 27–38, 2005.

5. GENCODE: The reference human genome annotation for The ENCODE Project

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3