Quantification of double stranded DNA breaks and telomere length as proxies for corneal damage and replicative stress in 64 human keratoconus corneas

Author:

Wisse Robert PLORCID,Kuiper Jonas JW,Radstake Timothy RDJ,Broen Jasper CA

Abstract

AbstractPurposeThe pathogenesis of keratoconus (KC) is multifactorial and associated with oxidative stress and subsequent DNA damage. The aim of this study was to investigate differences in DNA damage and replicative stress in patients with KC, and in both healthy and diseased controls.MethodsSixty-four corneal buttons were obtained from 27 patients with KC after corneal transplant surgery, 21 patients with a decompensated graft (DG), and 16 healthy controls (HC). The amount of intact Alu elements per genome copy as measured by qPCR was used to quantify intact DNA. Telomere length was measured as a proxy for replicative stress. In addition, telomerase reverse transcriptase (hTERT) gene expression level was assessed.ResultsMean (±SD) DNA damage was similar between the KC (5.56 ±14.08), DG (3.16 ±8.22), and HC (3.51 ±6.66) groups (P=0.807). No associations were found between DNA damage and patient age (P=0.523), atopic constitution (P=0.240), or contact lens wear (P=0.393). Telomere length differed (P=0.034), most notably in the KC group, and hTERT was not detected in any corneal sample. Three cross-linked (CXL) KC corneas did not contain significant more DNA damage (2.6x, P = 0.750).ConclusionsBased on these findings, differences in actual corneal DNA damage in KC could not be identified, and the longer telomere length in KC did not support replicative stress as a major etiological factor in the pathogenesis of KC. Future longitudinal investigations on KC etiology should assess progressive early cases to better comprehend the cellular and molecular processes preceding the archetypical morphological changes.PrecisOxidative stress is allegedly linked with the development of keratoconus. Whether these stressors actually lead to persisting DNA damage and replicative stress is debated. DNA damage was comparable with control samples, and a shortened telomere length was not identified.

Publisher

Cold Spring Harbor Laboratory

Reference26 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3