A First-principles Approach to Large-scale Nuclear Architecture

Author:

Agrawal Ankit,Ganai Nirmalendu,Sengupta Surajit,Menon Gautam I.ORCID

Abstract

AbstractModel approaches to nuclear architecture have traditionally ignored the biophysical consequences of ATP-fueled active processes acting on chromatin. However, transcription-coupled activity is a source of stochastic forces that are substantially larger than the Brownian forces present at physiological temperatures. Here, we describe a first-principles approach to large-scale nuclear architecture in metazoans that incorporates cell-type-specific active processes. The model predicts the statistics of positional distributions, shapes and overlaps of each chromosome. Our simulations reproduce common organising principles underlying large-scale nuclear architecture across human cell nuclei in interphase. These include the differential positioning of euchromatin and heterochromatin, the territorial organisation of chromosomes including both gene-density-based and size-based chromosome radial positioning schemes, the non-random locations of chromosome territories and the shape statistics of individual chromosomes. We propose that the biophysical consequences of the distribution of transcriptional activity across chromosomes should be central to any chromosome positioning code.

Publisher

Cold Spring Harbor Laboratory

Reference94 articles.

1. Agrawal, A. , Ganai, N. , Sengupta, S. and Menon, G. I. (2017). Chromatin as active matter. Journal of Statistical Mechanics: Theory and Experiment 2017, 014001.

2. Macrogenomic engineering via modulation of the scaling of chromatin packing density;Nature Biomedical Engineering,2017

3. Polymer physics of nuclear organization and function;Physics Reports,2017

4. Spatio-temporal dynamics of genomic organization and function in the mammalian cell nucleus

5. The Spatial Organization of the Human Genome

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3