Acquisition of a new-latency conditioned nictitating membrane response--major, but not complete, dependence on the ipsilateral cerebellum.

Author:

Yeo C H,Lobo D H,Baum A

Abstract

Classical conditioning of the nictitating membrane response (NMR) of rabbits is simple associative learning of a motor response. In several two-stage experiments, reversible inactivations of the deep cerebellar nuclei in stage 1 appeared to prevent acquisition of NMR conditioning in naive rabbits--no conditioned responses (CRs) were evident after inactivations were lifted in stage 2. Results of a three-stage experiment were different. When subjects were first trained with a light conditional stimulus (CS) in stage 1, reversible cerebellar inactivations during conditioning to a different, tone CS during stage 2 did not appear to prevent new learning because CRs to the tone CS were evident when the inactivation was lifted. Results from the two-stage experiments support the suggestion that the cerebellum is essential for the acquisition of NMR conditioning, but results from the three-stage experiment do not. Here, we use a three-stage design with different interstimulus intervals (ISIs) in stages 1 and 2. Because CRs develop with latencies-to-peak dependent on the ISI, learning during stage 1 can be dissociated from that accruing in stage 2. Complete inactivation of the ipsilateral cerebellar nuclei with muscimol substantially but not completely prevented learning with the second ISI during stage 2 because small CR peaks around the stage 2 ISI could be detected in some subjects after the inactivation had been lifted in stage 3. We suggest that the weak levels of conditioning possible during unilateral inactivation depend on the contralateral cerebellum or on extracerebellar circuitry and that these may be capable of supporting transfer of conditioning in a previous three-stage experiment. But, we confirm that normal NMR conditioning is critically dependent on the ipsilateral cerebellum.

Publisher

Cold Spring Harbor Laboratory

Subject

Cellular and Molecular Neuroscience,Cognitive Neuroscience,Neuropsychology and Physiological Psychology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3