Mitochondrial protein interaction landscape of SS-31

Author:

Chavez Juan D.,Tang Xiaoting,Campbell Matthew D.,Reyes Gustavo,Kramer Philip A.,Stuppard Rudy,Keller Andrew,Marcinek David J.,Bruce James E.

Abstract

AbstractMitochondrial dysfunction underlies the etiology of a broad spectrum of diseases including heart disease, cancer, neurodegenerative diseases, and the general aging process. Therapeutics that restore healthy mitochondrial function hold promise for treatment of these conditions. The synthetic tetrapeptide, elamipretide (SS-31), improves mitochondrial function, but mechanistic details of its pharmacological effects are unknown. Reportedly, SS-31 primarily interacts with the phospholipid cardiolipin in the inner mitochondrial membrane. Here we utilize chemical cross-linking with mass spectrometry to identify protein interactors of SS-31 in mitochondria. The SS-31-interacting proteins, all known cardiolipin binders, fall into two groups, those involved in ATP production through the oxidative phosphorylation pathway and those involved in 2-oxoglutarate metabolic processes. Residues cross-linked with SS-31 reveal binding regions that in many cases, are proximal to cardiolipin-protein interacting regions. These results offer the first glimpse of the protein interaction landscape of SS-31 and provide new mechanistic insight relevant to SS-31 mitochondrial therapy.Significance StatementSS-31 is a synthetic peptide that improves mitochondrial function and is currently undergoing clinical trials for treatments of heart failure, primary mitochondrial myopathy, and other mitochondrial diseases. SS-31 interacts with cardiolipin which is abundant in the inner mitochondrial membrane, but mechanistic details of its pharmacological effects are unknown. Here we apply a novel chemical cross-linking/mass spectrometry method to provide the first direct evidence for specific interactions between SS-31 and mitochondrial proteins. The identified SS-31 interactors are functional components in ATP production and 2-oxoglutarate metabolism and signaling, consistent with improved mitochondrial function resultant from SS-31 treatment. These results offer the first glimpse of the protein interaction landscape of SS-31 and provide new mechanistic insight relevant to SS-31 mitochondrial therapy.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3