Abstract
AbstractFinding the best stimulus for a neuron is challenging because it is impossible to test all possible stimuli. Here we used a vast, unbiased, and diverse hypothesis space encoded by a generative deep neural network model to investigate neuronal selectivity in inferotemporal cortex without making any assumptions about natural features or categories. A genetic algorithm, guided by neuronal responses, searched this space for optimal stimuli. Evolved synthetic images evoked higher firing rates than even the best natural images and revealed diagnostic features, independently of category or feature selection. This approach provides a way to investigate neural selectivity in any modality that can be represented by a neural network and challenges our understanding of neural coding in visual cortex.HighlightsA generative deep neural network interacted with a genetic algorithm to evolve stimuli that maximized the firing of neurons in alert macaque inferotemporal and primary visual cortex.The evolved images activated neurons more strongly than did thousands of natural images.Distance in image space from the evolved images predicted responses of neurons to novel images.
Publisher
Cold Spring Harbor Laboratory
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献