The Plasmodium falciparum protein VCAP1 controls Maurer’s cleft morphology, knob architecture and PfEMP1 trafficking

Author:

McHugh Emma,Carmo Olivia,Blanch Adam,Looker Oliver,Liu Boyin,Tiash Snigdha,Andrew Dean,Batinovic Steven,Low J.Y Andy,McMillan Paul,Tilley Leann,Dixon Matthew W.AORCID

Abstract

AbstractThe malaria parasite, Plasmodium falciparum, traffics the virulence protein, P. falciparum erythrocyte membrane protein 1 (PfEMP1) to the surface of infected red blood cells (RBCs) via membranous organelles, known as the Maurer’s clefts. We developed a method for efficient enrichment of Maurer’s clefts and profiled the protein composition of this trafficking organelle. We identified 13 previously uncharacterised or poorly characterised Maurer’s cleft proteins. We generated transfectants expressing GFP-fusions of 7 proteins and confirmed their Maurer’s cleft location. Using co-immunoprecipitation and mass spectrometry we have generated a protein interaction map of proteins at the Maurer’s clefts. We identified two key clusters that may function in the loading and unloading of PfEMP1 into and out of the Maurer’s clefts. We focus on a putative PfEMP1 loading complex that includes the newly characterised virulence complex assembly protein 1 (VCAP1). Disruption of VCAP1 causes Maurer’s cleft fragmentation, aberrant knobs, ablation of PfEMP1 surface expression and loss of the PfEMP1 directed adhesion. ΔVCAP1 parasite lines have a growth advantage compared to wildtype parasites; and the infected RBCs are more deformable and more osmotically fragile.ImportanceThe trafficking of the virulence antigen PfEMP1 and its presentation at the knob structures at the surface of parasite infected RBCs is central to severe adhesion related pathologies such as cerebral and placental malaria. This work adds to our understanding of how PfEMP1 is trafficked to the RBC membrane by defining the protein-protein interaction networks that function at the Maurer’s clefts controlling PfEMP1 loading and unloading. This work adds significantly to our understanding of virulence protein trafficking and will provide crucial knowledge that will be required to determine the mechanisms underpinning parasite driven host cell remodelling, parasite survival within the host and virulence mechanisms.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3