A novel bioreactor technology for modelling fibrosis in human and rodent precision-cut liver slices

Author:

Paish Hannah L,Reed Lee H,Brown Helen,Bryan Mark C,Govaere Olivier,Leslie Jack,Barksby Ben S,French Jeremy,White Steven A,Manas Derek M,Robinson Stuart M,Spoletini Gabriele,Griffiths Clive,Mann Derek A,Borthwick Lee A,Drinnan Michael J,Mann Jelena,Oakley Fiona

Abstract

Summary boxWhat is already known about this subject?Currently there are no effective anti-fibrotic drugs to treat liver fibrosis and there is an urgent unmet need to increase our knowledge of the disease process and develop better tools for anti-fibrotic drug discovery.Preclinical in vitro cell cultures and animal models are widely used to study liver fibrosis and test anti-fibrotic drugs, but have shortfalls; cell culture models lack the relevant complex cell-cell interactions of the liver and animal models only reproduce some features of human disease.Precision Cut Liver Slices (PCLS) are structurally representative of the liver and can be used to model liver fibrosis and test anti-fibrotic drugs. However, PCLS are typically cultured in elevated, non-physiological oxygen levels and only have a healthy lifespan of 48h.What are the new findings?We have developed a novel bioreactor culture system that increases the longevity of functional PCLS to up to 6 days under normoxic conditions.Bioreactor cultured PCLS can be used to model fibrogenesis in both normal and fibrotic PCLS using a combination of biochemical and histological outputs.Administration of an Alk5 inhibitor effectively limits fibrogenesis in normal rodent and human PCLS and in rodent PCLS with established fibrosis.How might it impact on clinical practice in the foreseeable future?The extended longevity of bioreactor cultured PCLS represent a novel pre-clinical tool to investigate the cellular and molecular mechanisms of liver fibrosis.Bioreactor cultured human PCLS offer a clinically relevant system to test efficacy of anti-fibrotic drugs.AbstractObjectivePrecision cut liver slices (PCLS) retain the structure and cellular composition of the native liver and represent an improved system to study liver fibrosis compared to two-dimensional mono or co-cultures. The objective of this study was to develop a bioreactor system to increase the healthy lifespan of PCLS and model fibrogenesis.DesignPCLS were generated from normal rat or human liver, or 4-week carbon tetrachloride-fibrotic rat liver and cultured in our patented bioreactor. PCLS function was quantified by albumin ELISA. Fibrosis was induced in PCLS by TGFβ1 and PDGFββ stimulation. Alk5 inhibitor therapy was used. Fibrosis was assessed by fibrogenic gene expression, Picrosirius Red and αSmooth Muscle Actin staining, hydroxyproline assay and collagen 1a1, fibronectin and hyaluronic acid ELISA.ResultsBioreactor cultured PCLS are viable, maintaining tissue structure and stable albumin secretion for up to 6 days under normoxic culture conditions. Conversely, standard static transwell cultured PCLS rapidly deteriorate and albumin secretion is significantly impaired by 48 hours. TGFβ1 and PDGFββ stimulation of rat or human PCLS induced fibrogenic gene expression, release of extracellular matrix proteins, activation of hepatic myofibroblasts and histological fibrosis. Fibrogenesis slowly progresses over 6-days in cultured fibrotic rat PCLS without exogenous challenge. Alk5 inhibitor limited fibrogenesis in both TGFβ1 and PDGFββ stimulated PCLS and fibrotic PCLS.ConclusionWe describe a new bioreactor technology which maintains functional PCLS cultures for 6 days. Bioreactor cultured PCLS can be successfully used to model fibrogenesis and demonstrate efficacy of an anti-fibrotic therapy.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3