Characterization of TAG-63 and its role on axonal transport in C. elegans

Author:

Bhan PreranaORCID,Shanmugam Muniesh MuthaiyanORCID,Wang Ding,Bayansan Odvogmed,Chen Chih-Wei,Wagner Oliver IngvarORCID

Abstract

ABSTRACTModel organisms are increasingly used to study and understand how neurofilament (NF)-based neurological diseases develop. However, whether a NF homolog exists in C. elegans remains unclear. We characterize TAG-63 as a NF-like protein with sequence homologies to human NEFH carrying various coiled coils as well as clustered phosphorylation sites. TAG-63 also exhibits features of NFL such as a molecular weight of around 70 kD, the lack of KSP repeats and the ability to form 10 nm filamentous structures in transmission electron micrographs. An anti-NEFH antibody detects a band at the predicted molecular weight of TAG-63 in Western blots of whole worm lysates and this band cannot be detected in tag-63 knockout worms. A transcriptional tag-63 reporter expresses in a broad range of neurons, and various anti-NFH antibodies stain worm neurons with an overlapping expression of axonal vesicle transporter UNC-104(KIF1A). Cultured neurons grow shorter axons when incubating with drugs known to disintegrate the NF network and rhodamine-labeled in vitro reconstituted TAG-63 filaments disintegrate upon drug exposure. Speeds of UNC-104 motors are diminished in tag-63 mutant worms with visibly increased accumulations of motors along axons. UNC-104/TAG-63 and SNB-1/TAG-63 not only co-localize in neurons but also revealed positive BiFC (bimolecular fluorescence assay) signals.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3