Author:
Ali Md Zulfikar,Parisutham Vinuselvi,Choubey Sandeep,Brewster Robert C.
Abstract
AbstractThe single-input module (SIM) is a regulatory motif capable of coordinating gene expression across functionally related genes. We explore the relationship between regulation of the central autoregulated TF in a negatively regulated SIM and the target genes using a synthetic biology approach paired with stochastic simulations. Surprisingly, we find a fundamental asymmetry in the level of regulation experienced by the TF gene and its targets, even if they have identical regulatory DNA; the TF gene experiences stronger repression than its targets. This asymmetry is not predicted from deterministic modeling of the system but is revealed from corresponding stochastic simulations. The magnitude of asymmetry depends on factors such as the number of targets in the SIM, TF degradation rate (or growth rate) and TF binding affinity. Beyond implications for SIM motifs, the influence of network connectivity on regulatory levels highlights an interesting challenge for predictive models of gene regulation.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献