A hierarchical Bayesian framework for understanding the spatiotemporal dynamics of the intestinal epithelium

Author:

Maclaren O.J.ORCID,Parker A.,Pin C.,Carding S.R.,Watson A.J.M.,Fletcher A.G.,Byrne H.M.,Maini P.K.

Abstract

AbstractOur work addresses two key challenges, one biological and one methodological. First, we aim to understand how proliferation and cellular migration rates in the intestinal epithelium are related under healthy, damaged (Ara-C treated) and recovering conditions, and how these relations can be used to identify mechanisms of repair and regeneration. We analyse new data, presented in more detail in a companion paper, in which BrdU/IdU cell-labelling experiments were performed under these respective conditions. Second, in considering how to more rigorously process these data and interpret them using mathematical models, we develop a probabilistic, hierarchical framework. This framework provides a best-practice approach for systematically modelling and understanding the uncertainties that can otherwise undermine drawing reliable conclusions - uncertainties in experimental measurement and treatment, difficult-to-compare mathematical models of underlying mechanisms, and unknown or unobserved parameters. Both discrete and continuous mechanistic models are considered and related via hierarchical conditional probability assumptions. This allows the incorporation of features of both continuum tissue models and discrete cellular models. We perform model checks on both in-sample and out-of-sample datasets and use these checks to illustrate how to test possible model improvements and assess the robustness of our conclusions. This allows us to consider - and ultimately decide against - the need to retain finite-cell-size effects to explain a small misfit appearing in one set of long-time, out-of-sample predictions. Our approach leads us to conclude, for the present set of experiments, that a primarily proliferation-driven model is adequate for predictions over most time-scales. We describe each stage of our framework in detail, and hope that the present work may also serve as a guide for other applications of the hierarchical approach to problems in computational and systems biology more generally.Author SummaryThe intestinal epithelium serves as an important model system for studying the dynamics and regulation of multicellular populations. It is characterised by rapid rates of self-renewal and repair; failure of the regulation of these processes is thought to explain, in part, why many tumours occur in the intestinal and similar epithelial tissues. These features have led to a large amount of work on estimating rate parameters in the intestine. There still remain, however, large gaps between the raw data collected, the experimental interpretation of these data, and speculative mechanistic models for underlying processes. In our view hierarchical statistical modelling provides an ideal, but currently underutilised, method to begin to bridge these gaps. This approach makes essential use of the distinction between ‘measurement’, ‘process’ and ‘parameter’ models, giving an explicit framework for combining experimental data and mechanistic modelling in the presence of multiple sources of uncertainty. As we illustrate, the hierarchical approach also provides a suitable framework for addressing other methodological questions of broader interest in systems biology: how to systematically relate discrete and continuous mechanistic models; how to formally interpret and visualise statistical evidence; and how to express causal assumptions in terms of conditional independence.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3