Photoacoustic Imaging

Author:

Zhang Yin,Hong Hao,Cai Weibo

Abstract

INTRODUCTIONPhotoacoustic imaging, which is based on the photoacoustic effect, has developed extensively over the last decade. Possessing many attractive characteristics such as the use of nonionizing electromagnetic waves, good resolution and contrast, portable instrumention, and the ability to partially quantitate the signal, photoacoustic techniques have been applied to the imaging of cancer, wound healing, disorders in the brain, and gene expression, among others. As a promising structural, functional, and molecular imaging modality for a wide range of biomedical applications, photoacoustic imaging can be categorized into two types of systems: photoacoustic tomography (PAT), which is the focus of this article, and photoacoustic microscopy (PAM). We first briefly describe the endogenous (e.g., hemoglobin and melanin) and the exogenous (e.g., indocyanine green [ICG], various gold nanoparticles, single-walled carbon nanotubes [SWNTs], quantum dots [QDs], and fluorescent proteins) contrast agents for photoacoustic imaging. Next, we discuss in detail the applications of nontargeted photoacoustic imaging. Recently, molecular photoacoustic (MPA) imaging has gained significant interest, and a few proof-of-principle studies have been reported. We summarize the current state of the art of MPA imaging, including the imaging of gene expression and the combination of photoacoustic imaging with other imaging modalities. Last, we point out obstacles facing photoacoustic imaging. Although photoacoustic imaging will likely continue to be a highly vibrant research field for years to come, the key question of whether MPA imaging could provide significant advantages over nontargeted photoacoustic imaging remains to be answered in the future.

Publisher

Cold Spring Harbor Laboratory

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 74 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3