Author:
Swoger Jim,Pampaloni Francesco,Stelzer Ernst H.K.
Abstract
In modern biology, most optical imaging technologies are applied to two-dimensional cell culture systems; that is, they are used in a cellular context that is defined by hard and flat surfaces. However, a physiological context is not found in single cells cultivated on coverslips. It requires the complex three-dimensional (3D) relationship of cells cultivated in extracellular matrix (ECM) gels, tissue sections, or in naturally developing organisms. In fact, the number of applications of 3D cell cultures in basic research as well as in drug discovery and toxicity testing has been increasing over the past few years. Unfortunately, the imaging of highly scattering multicellular specimens is still challenging. The main issues are the limited optical penetration depth, the phototoxicity, and the fluorophore bleaching. Light-sheet-based fluorescence microscopy (LSFM) overcomes many drawbacks of conventional fluorescence microscopy by using an orthogonal/azimuthal fluorescence arrangement with independent sets of lenses for illumination and detection. The basic idea is to illuminate the specimen from the side with a thin light sheet that overlaps with the focal plane of a wide-field fluorescence microscope. Optical sectioning and minimal phototoxic damage or photobleaching outside a small volume close to the focal plane are intrinsic properties of LSFM. We discuss the basic principles of LSFM and methods for the preparation, embedding, and imaging of 3D specimens used in the life sciences in an implementation of LSFM known as the single (or selective) plane illumination microscope (SPIM).
Publisher
Cold Spring Harbor Laboratory
Subject
General Biochemistry, Genetics and Molecular Biology
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献