3D Images of Neuronal Adhesion Molecule Contactin-2 Reveal an Unanticipated Two-State Architecture

Author:

Lu Z.,Lei D.,Seshadrinathan S.,Szwed A.,Liu J.,Liu J.,Rudenko G.,Ren G.

Abstract

ABSTRACTContactins (CNTNs) are important cell adhesion molecules that mediate neuronal and axoglial contacts, and lesions in these molecules are linked to neuropsychiatric disorders. The extracellular domain of CNTNs contains six Ig domains and four FNIII domains. Crystal structures have shown that Ig1-Ig4 forms a horseshoe-shaped headpiece, in which the N-terminal domains might fold back on the C-terminal domains to form molecular super-U shaped architecture. The arrangement of these domains has been controversial, which may due to the structural dynamics and conformation heterogeneity of the protein. Here, we used a single-molecule 3D imaging method, individual-particle electron tomography (IPET), to study the extracellular domain of CNTN2 that forms monomers with a broad spectrum of conformations, and obtained 60 three-dimensional (3D) reconstructions. In addition to the known horseshoe-shaped headpiece, ~75% headpieces unexpectedly adopt an open (elongated) or a semi-open conformations contributed to our understanding about structural dynamics. The ectodomains formed curve but not double-back in any uniform way, with an averaged molecular dimension of ~255 Å. The first-time demonstration of the dynamic nature and conformational preferences of the full-length CNTN2 ectodomain suggest that the headpiece exists in equilibrium in the ‘closed’ or ‘not-closed’ states. The important architecture may provide a structural platform for protein partners to influence this balance regulating the function of CNTN2. Encoding the ability of this neural adhesion molecule to form both homomers with itself, as well as recruit different protein partner to neuronal and axoglial contact points play the key role in mediating cell-cell interactions.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3