Abstract
Pistol ribozymes comprise a class of small, self-cleaving RNAs discovered via comparative genomic analysis. Prior work in the field has probed the kinetics of the cleavage reaction, as well as the influence of various metal ion cofactors that accelerate the process. In the current study we perform unbiased and unconstrained molecular dynamics simulations from two current high-resolution pistol crystal structures, and we analyzed trajectory data within the context of the currently accepted ribozyme mechanistic framework. Root-mean-squared deviations (RMSDs), radial distribution functions (RDFs), and distributions of nucleophilic angle-of-attack reveal insights into the potential roles of three magnesium ions with respect to catalysis and overall conformational stability of the molecule. A series of simulation trajectories containingin-silicomutations reveal the relatively flexible and partially interchangeable roles of two particular magnesium ions within solvated hydrogen-bonding distances from the catalytic center.
Publisher
Cold Spring Harbor Laboratory