Simultaneous SNP selection and adjustment for population structure in high dimensional prediction models

Author:

Bhatnagar Sahir RORCID,Yang Yi,Lu Tianyuan,Schurr Erwin,Loredo-Osti JC,Forest Marie,Oualkacha Karim,Greenwood Celia MTORCID

Abstract

AbstractComplex traits are known to be influenced by a combination of environmental factors and rare and common genetic variants. However, detection of such multivariate associations can be compromised by low statistical power and confounding by population structure. Linear mixed effects models (LMM) can account for correlations due to relatedness but have not been applicable in high-dimensional (HD) settings where the number of fixed effect predictors greatly exceeds the number of samples. False positives or false negatives can result from two-stage approaches, where the residuals estimated from a null model adjusted for the subjects’ relationship structure are sub-sequently used as the response in a standard penalized regression model. To overcome these challenges, we develop a general penalized LMM with a single random effect called ggmix for simultaneous SNP selection and adjustment for population structure in high dimensional prediction models. We develop a blockwise coordinate descent algorithm with automatic tuning parameter selection which is highly scalable, computationally efficient and has theoretical guarantees of convergence. Through simulations and three real data examples, we show that ggmix leads to more parsimonious models compared to the two-stage approach or principal component adjustment with better prediction accuracy. Our method performs well even in the presence of highly correlated markers, and when the causal SNPs are included in the kinship matrix. ggmix can be used to construct polygenic risk scores and select instrumental variables in Mendelian randomization studies. Our algorithms are available in an R package (https://github.com/greenwoodlab/ggmix).1Author SummaryThis work addresses a recurring challenge in the analysis and interpretation of genetic association studies: which genetic variants can best predict and are independently associated with a given phenotype in the presence of population structure ? Not controlling confounding due to geographic population structure, family and/or cryptic relatedness can lead to spurious associations. Much of the existing research has therefore focused on modeling the association between a phenotype and a single genetic variant in a linear mixed model with a random effect. However, this univariate approach may miss true associations due to the stringent significance thresholds required to reduce the number of false positives and also ignores the correlations between markers. We propose an alternative method for fitting high-dimensional multivariable models, which selects SNPs that are independently associated with the phenotype while also accounting for population structure. We provide an efficient implementation of our algorithm and show through simulation studies and real data examples that our method outperforms existing methods in terms of prediction accuracy and controlling the false discovery rate.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. ggmix: Variable Selection in Linear Mixed Models for SNP Data;CRAN: Contributed Packages;2020-03-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3