Utilization of high throughput genome sequencing technology for large scale single nucleotide polymorphism discovery in red deer and Canadian elk

Author:

Brauning Rudiger,Fisher Paul J,McCulloch Alan F,Smithies Russell J,Ward James F,Bixley Matthew J,Lawley Cindy T,Rowe Suzanne J,McEwan John C

Abstract

Deer farming is a significant international industry. For genetic improvement, using genomic tools, an ordered array of DNA variants and associated flanking sequence across the genome is required. This work reports a comparative assembly of the deer genome and subsequent DNA variant identification. Next generation sequencing combined with an existing bovine reference genome enabled the deer genome to be assembled sufficiently for large-scale SNP discovery. In total, 28 Gbp of sequence data were generated from seven Cervus elaphus (European red deer and Canadian elk) individuals. After aligning sequence to the bovine reference genome build UMD 3.0 and binning reads into one Mbp groups; reads were assembled and analyzed for SNPs. Greater than 99% of the non-repetitive fraction of the bovine genome was covered by deer chromosomal scaffolds. We identified 1.8 million SNPs meeting Illumina InfiniumII SNP chip technical threshold. Markers on the published Red x Pere David deer linkage map were aligned to both UMD3.0 and the new deer chromosomal scaffolds. This enabled deer linkage groups to be assigned to deer chromosomal scaffolds, although the mapping locations remain based on bovine order. Genotyping of 270 SNPs on a Sequenom MS system showed that 88% of SNPs identified could be amplified. Also, inheritance patterns showed no evidence of departure from Hardy-Weinberg equilibrium. A comparative assembly of the deer genome, alignment with existing deer genetic linkage groups and SNP discovery has been successfully completed and validated facilitating application of genomic technologies for subsequent deer genetic improvement.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3