Adversarial generation of gene expression data

Author:

Viñas RamonORCID,Andrés-Terré Helena,Liò PietroORCID,Bryson KevinORCID

Abstract

AbstractThe problem of reverse engineering gene regulatory networks from high-throughput expression data is one of the biggest challenges in bioinformatics. In order to benchmark network inference algorithms, simulators of well-characterized expression datasets are often required. However, existing simulators have been criticized because they fail to emulate key properties of gene expression data.In this study we address two problems. First, we propose mechanisms to faithfully assess the realism of a synthetic gene expression dataset. Second, we design an adversarial simulator of expression data, gGAN, based on a Generative Adversarial Network. We show that our model outperforms existing simulators by a large margin, achieving realism scores that are up to 17 times higher than those of GeneNetWeaver and SynTReN. More importantly, our results show that gGAN is, to our best knowledge, the first simulator that passes the Turing test for gene expression data proposed by Maier et al. (2013).

Publisher

Cold Spring Harbor Laboratory

Reference21 articles.

1. Cooper, G. (2000). Cells As Experimental Models. 2nd edition. Sunderland (MA): Sinauer Associates.

2. Many Microbe Microarrays Database: uniformly normalized Affymetrix compendia with structured experimental metadata

3. RegulonDB version 9.0: high-level integration of gene regulation, coexpression, motif clustering and beyond

4. Goodfellow, I. J. (2017). NIPS 2016 tutorial: Generative adversarial networks. CoRR, abs/1701.00160.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3