Atypical spatial frequency dependence of visual metacognition among schizophrenia patients

Author:

Koizumi Ai,Hori Tomoki,Maniscalco Brian,Hayase Makoto,Mishima Ryou,Kawashima Takahiko,Miyata Jun,Aso Toshihiko,Lau Hakwan,Takahashi Hidehiko,Amano Kaoru

Abstract

AbstractAlthough altered early stages of visual processing have been reported among schizophrenia patients, how such atypical visual processing may affect higher-level cognition remains largely unknown. Here we tested the hypothesis that metacognitive performance may be atypically modulated by spatial frequency (SF) of visual stimuli among individuals with schizophrenia, given their altered magnocellular function. To study the effect of SF on metacognitive performance, we asked patients and controls to perform a visual detection task on gratings with different SFs and report confidence, and analyzed the data using the signal detection theoretic measure meta-d’. Control subjects showed better metacognitive performance after yes- (stimulus-presence) than after no- (stimulus-absence) responses (‘yes-response advantage’) for high SF (HSF) stimuli but not for low SF (LSF) stimuli. The patients, to the contrary, showed a ‘yes-response advantage’ not only for HSF but also for LSF stimuli, indicating atypical SF dependency of metacognition. An fMRI experiment using the same task revealed that the dorsolateral prefrontal cortex (DLPFC), known to be crucial for metacognition, shows activity mirroring the behavioral results: decoding accuracy of perceptual confidence in DLPFC was significantly higher for HSF than for LSF stimuli in controls, whereas this decoding accuracy was independent of SF in patients. While individuals without schizophrenia may flexibly adapt metacognitive computations across SF ranges, patients may employ a different mechanism that is independent of SF. Because visual stimuli of low SF have been linked to top-down processing in predictive coding, this may reflect atypical functioning in these processes in schizophrenia.HighlightsVisual metacognition of controls was dependent on spatial frequency.Visual metacognition of schizophrenia patients was independent of spatial frequency.Patients and controls differently rely on the dorsolateral prefrontal cortex.Sensory inputs may reach metacognitive circuits in an atypical manner among patients.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3