Module analysis captures pancancer genetically and epigenetically deregulated cancer driver genes for smoking and antiviral response

Author:

Champion Magali,Brennan Kevin,Croonenborghs Tom,Gentles Andrew J.,Pochet Nathalie,Gevaert Olivier

Abstract

AbstractThe availability of increasing volumes of multi-omics profiles across many cancers promises to improve our understanding of the regulatory mechanisms underlying cancer. The main challenge is to integrate these multiple levels of omics profiles and especially to analyze them across many cancers. Here we present AMARETTO, an algorithm that addresses both challenges in three steps. First, AMARETTO identifies potential cancer driver genes through integration of copy number, DNA methylation and gene expression data. Then AMARETTO connects these driver genes with co-expressed target genes that they control, defined as regulatory modules. Thirdly, we connect AMARETTO modules identified from different cancer sites into a pancancer network to identify cancer driver genes. Here we applied AMARETTO in a pancancer study comprising eleven cancer sites and confirmed that AMARETTO captures hallmarks of cancer. We also demonstrated that AMARETTO enables the identification of novel pancancer driver genes. In particular, our analysis led to the identification of pancancer driver genes of smoking-induced cancers and ‘antiviral’ interferon-modulated innate immune response.Software availabilityAMARETTO is available as an R package athttps://bitbucket.org/gevaertlab/pancanceramarettoHighlightsWe present an algorithm for pancancer identification of cancer driver genes based on multiomics data fusionGPX2 is a novel driver gene in smoking induced cancers and validated using knockdown of GPX2 in the A549 cell line.OAS2 is a novel driver gene defining cancers with an antiviral signature supported by increased infiltration of tumor-associated macrophages.Research in contextWe present an algorithm that combines multiple sources of molecular data to identify novel genes that are involved in cancer development. We applied this algorithm on multiple cancers in a combined fashion and identified a network of pancancer driver genes. We highlighted two genes in detail GPX2 and OAS2. We showed that GPX2 is an important cancer gene in smoking induced cancers, and validated our predictions using experimental data where GPX2 was inactivated in a lung cancer cell line. Similarly we showed that OAS2 is an important cancer driver gene in cancers that show an antiviral signature.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3