High-force magnetic tweezers with hysteresis-free force feedback

Author:

Kah D.,Dürrbeck C.,Schneider W.,Fabry B.,Gerum R. C.ORCID

Abstract

ABSTRACTMagnetic tweezers based on solenoids with iron alloy cores are widely used to apply large forces (~100 nN) onto micron-sized (~5 μm) superparamagnetic particles for mechanical manipulation or microrheological measurements at the cellular and molecular level. The precision of magnetic tweezers, however, is limited by the magnetic hysteresis of the core material, especially for time-varying force protocols. Here, we eliminate magnetic hysteresis by a feedback control of the magnetic induction, which we measure with a Hall sensor mounted to the distal end of the solenoid core. We find that the generated force depends on the induction according to a power-law relationship, and on the bead-tip distance according to a stretched exponential relationship. Together, both relationships allow for an accurate force calibration and precise force feedback with only 3 calibration parameters. We apply our method to measure the force-dependence of the viscoelastic and plastic properties of fibroblasts using a protocol with stepwise increasing and decreasing forces. We find that soft cells show an increasing stiffness but decreasing plasticity at higher forces, indicating a pronounced stress stiffening of the cytoskeleton. By contrast, stiff cells show no stress stiffening but an increasing plasticity at higher forces. These findings indicate profound differences between soft and stiff cells regarding their protection mechanisms against external mechanical stress. In summary, our method increases the precision, simplifies the handling and extends the applicability of magnetic tweezers.SIGNIFICANCEMagnetic tweezers are widely used, versatile tools to investigate the mechanical behavior of cells or to measure the strength of receptor-ligand bonds. A limitation of existing high-force magnetic tweezer setups, however, is caused by the magnetic hysteresis of the tweezer core material. This magnetic hysteresis requires that the tweezer core must be de-magnetized (de-Gaussed) prior to each measurement, and that flexible force protocols with decreasing forces are not possible. We describe how these limitations can be overcome with a force feedback though direct magnetic field measurement. We demonstrate the applicability of our setup by investigating the visco-elastic and plastic deformations of fibroblasts to forces of different amplitudes.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3