An ecophysiological model of plant-pest interactions: the role of nutrient and water availability

Author:

Zaffaroni Marta,Cunniffe Nik J.,Bevacqua Daniele

Abstract

AbstractEmpirical studies have shown that particular irrigation/fertilization regimes can control pest populations in agroecosystems. This appears to promise that the ecological concept of bottom-up control can be applied to pest management. However, a conceptual framework is necessary to develop a mechanistic basis for empirical evidence. Here we couple a mechanistic plant growth model with a pest population model. We demonstrate its utility by applying it to the peach - green aphid system. Aphids are herbivores which feed on the plant phloem, deplete plants’ resources and (potentially) transmit viral diseases. The model reproduces system properties observed in field studies and shows under which conditions the diametrically-opposed plant vigour and plant stress hypotheses find support. We show that the effect of fertilization/irrigation on the pest population cannot be simply reduced as positive or negative. In fact, the magnitude and direction of any effect depends on the precise level of fertilization/irrigation and on the date of observation. We show that a new synthesis of experimental data can emerge by embedding a mechanistic plant growth model, widely studied in agronomy, in a consumer-resource modelling framework, widely studied in ecology. The future challenge is to use this insight to inform practical decision making by farmers and growers.

Publisher

Cold Spring Harbor Laboratory

Reference75 articles.

1. The evolutionary origins of pesticide resistance;Biological Reviews,2019

2. S. R. Gliessman , Agroecology: The Ecology of Sustainable Food Systems. Boca Raton, USA: CRC Press, third ed., 2015.

3. Resource Availability and Plant Antiherbivore Defense

4. Insects on Trees: Population and Individual Response to Fertilization

5. Host Plant Quality and Fecundity in Herbivorous Insects

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3