Clonal breeding strategies to harness heterosis: insights from stochastic simulation

Author:

Labroo Marlee R.,Endelman Jeffrey B.ORCID,Gemenet Dorcus C.,Werner Christian R.,Gaynor R. Chris,Covarrubias-Pazaran Giovanny E.

Abstract

AbstractTo produce genetic gain, hybrid crop breeding can change the additive as well as dominance genetic value of populations, which can lead to utilization of heterosis. A common hybrid breeding strategy is reciprocal recurrent selection (RRS), in which parents of hybrids are typically recycled within pools based on general combining ability (GCA). However, the relative performance of RRS and other possible breeding strategies have not been thoroughly compared. RRS can have relatively increased costs and longer cycle lengths which reduce genetic gain, but these are sometimes outweighed by its ability to harness heterosis due to dominance and increase genetic gain. Here, we used stochastic simulation to compare gain per unit cost of various clonal breeding strategies with different amounts of population inbreeding depression and heterosis due to dominance, relative cycle lengths, time horizons, estimation methods, selection intensities, and ploidy levels. In diploids with phenotypic selection at high intensity, whether RRS was the optimal breeding strategy depended on the initial population heterosis. However, in diploids with rapid cycling genomic selection at high intensity, RRS was the optimal breeding strategy after 50 years over almost all amounts of initial population heterosis under the study assumptions. RRS required more population heterosis to outperform other strategies as its relative cycle length increased and as selection intensity decreased. Use of diploid fully inbred parents vs. outbred parents with RRS typically did not affect genetic gain. In autopolyploids, RRS typically was not beneficial regardless of the amount of population inbreeding depression.Key MessageReciprocal recurrent selection sometimes increases genetic gain per unit cost in clonal diploids with heterosis due to dominance, but it typically does not benefit autopolyploids.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3