Systematic Bayesian Posterior Analysis Guided by Kullback-Leibler Divergence Facilitates Hypothesis Formation

Author:

Huber Holly A.,Georgia Senta K.,Finley Stacey D.ORCID

Abstract

AbstractBayesian inference produces a posterior distribution for the parameters and predictions from a mathematical model that can be used to guide the formation of hypotheses; specifically, the posterior may be searched for evidence of alternative model hypotheses, which serves as a starting point for hypothesis formation and model refinement. Previous approaches to search for this evidence are largely qualitative and unsystematic; further, demonstrations of these approaches typically stop at hypothesis formation, leaving the questions they raise unanswered. Here, we introduce a Kullback-Leibler (KL) divergence-based ranking to expedite Bayesian hypothesis formation and investigate the hypotheses it generates, ultimately generating novel, biologically significant insights. Our approach uses KL divergence to rank parameters by how much information they gain from experimental data. Subsequently, rather than searching all model parameters at random, we use this ranking to prioritize examining the posteriors of the parameters that gained the most information from the data for evidence of alternative model hypotheses. We test our approach with two examples, which showcase the ability of our approach to systematically uncover different types of alternative hypothesis evidence. First, we test our KL divergence ranking on an established example of Bayesian hypothesis formation.Our top-ranked parameter matches the one previously identified to produce alternative hypotheses. In the second example, we apply our ranking in a novel study of a computational model of prolactin-induced JAK2-STAT5 signaling, a pathway that mediates beta cell proliferation. Here, we cluster our KL divergence rankings to select only a subset of parameters to examine for qualitative evidence of alternative hypotheses, thereby expediting hypothesis formation. Within this subset, we find a bimodal posterior revealing two possible ranges for the prolactin receptor degradation rate. We go on to refine the model, incorporating new data and determining which degradation rate is most plausible. Overall, we demonstrate that our approach offers a novel quantitative framework for Bayesian hypothesis formation and use it to produce a novel, biologically-significant insight.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3