Characterizing Patient Representations for Computational Phenotyping

Author:

Callahan Tiffany J.ORCID,Stefanksi Adrianne L.ORCID,Ostendorf Danielle M.ORCID,Wyrwa Jordan M.ORCID,Davies Sara J. DeakyneORCID,Hripcsak GeorgeORCID,Hunter Lawrence E.ORCID,Kahn Michael G.ORCID

Abstract

AbstractPatient representation learning methods create rich representations of complex data and have potential to further advance the development of computational phenotypes (CP). Currently, these methods are either applied to small predefined concept sets or all available patient data, limiting the potential for novel discovery and reducing the explainability of the resulting representations. We report on an extensive, data-driven characterization of the utility of patient representation learning methods for the purpose of CP development or automatization. We conducted ablation studies to examine the impact of patient representations, built using data from different combinations of data types and sampling windows on rare disease classification. We demonstrated that the data type and sampling window directly impact classification and clustering performance, and these results differ by rare disease group. Our results, although preliminary, exemplify the importance of and need for data-driven characterization in patient representation-based CP development pipelines.

Publisher

Cold Spring Harbor Laboratory

Reference34 articles.

1. Computational phenotype discovery using unsupervised feature learning over noisy, sparse, and irregular clinical data;PLoS One,2013

2. A review of approaches to identifying patient phenotype cohorts using electronic health records;J Am Med Inform Assoc,2014

3. Deep phenotyping: The details of disease;Nature,2015

4. Representation learning: a review and new perspectives;IEEE Trans Pattern Anal Mach Intell,2013

5. Deep representation learning of patient data from electronic health records (EHR): A systematic review;J Biomed Inform,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3